 |


|
 |
Item Details
Title:
|
SEMI-SUPERVISED LEARNING
|
By: |
Olivier Chapelle (Editor), Bernhard Scholkopf (Editor), Alexander Zien (Editor) |
Format: |
Online resource |

List price:
|
£69.54 |
We currently do not stock this item, please contact the publisher directly for
further information.
|
|
|
|
|
ISBN 10: |
0262255898 |
ISBN 13: |
9780262255899 |
Publisher: |
MIT PRESS LTD |
Pub. date: |
11 September, 2017 |
Series: |
Adaptive Computation and Machine Learning series |
Pages: |
528 |
Synopsis: |
In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning.The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.Olivier Chapelle and Alexander Zien are Research Scientists and Bernhard Scholkopf is Professor and Director at the Max Planck Institute for Biological Cybernetics in Tubingen. Scholkopf is coauthor of Learning with Kernels (MIT Press, 2002) and is a coeditor of Advances in Kernel Methods: Support Vector Learning (1998), Advances in Large-Margin Classifiers (2000), and Kernel Methods in Computational Biology (2004), all published by The MIT Press. |
Illustrations: |
98 illus. |
Publication: |
US |
Imprint: |
MIT Press |
Returns: |
Non-returnable |
|
|
|
 |


|

|

|

|

|
No Cheese, Please!
A fun picture book for children with food allergies - full of friendship and super-cute characters!Little Mo the mouse is having a birthday party.

|
My Brother Is a Superhero
Luke is massively annoyed about this, but when Zack is kidnapped by his arch-nemesis, Luke and his friends have only five days to find him and save the world...

|

|

|
|
 |