 |


|
 |
Item Details
Title:
|
QUASI-ACTIONS ON TREES II
FINITE DEPTH BASS-SERRE TREES |
By: |
Lee Mosher, Michah Sageev, Kevin Whyte |
Format: |
Paperback |

List price:
|
£73.50 |
We currently do not stock this item, please contact the publisher directly for
further information.
|
|
|
|
|
ISBN 10: |
0821847120 |
ISBN 13: |
9780821847121 |
Publisher: |
AMERICAN MATHEMATICAL SOCIETY |
Pub. date: |
15 October, 2011 |
Edition: |
New ed. |
Series: |
Memoirs of the American Mathematical Society 1008 |
Pages: |
105 |
Description: |
Addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. |
Synopsis: |
This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. The main theorem says that, under certain hypotheses, if $\mathcal{G}$ is a finite graph of coarse Poincare duality groups, then any finitely generated group quasi-isometric to the fundamental group of $\mathcal{G}$ is also the fundamental group of a finite graph of coarse Poincare duality groups, and any quasi-isometry between two such groups must coarsely preserve the vertex and edge spaces of their Bass-Serre trees of spaces.Besides some simple normalization hypotheses, the main hypothesis is the "crossing graph condition", which is imposed on each vertex group $\mathcal{G}_v$ which is an $n$-dimensional coarse Poincare duality group for which every incident edge group has positive codimension: the crossing graph of $\mathcal{G}_v$ is a graph $\epsilon_v$ that describes the pattern in which the codimension 1 edge groups incident to $\mathcal{G}_v$ are crossed by other edge groups incident to $\mathcal{G}_v$, and the crossing graph condition requires that $\epsilon_v$ be connected or empty. |
Publication: |
US |
Imprint: |
American Mathematical Society |
Returns: |
Returnable |
|
|
|
 |


|

|

|

|

|
No Cheese, Please!
A fun picture book for children with food allergies - full of friendship and super-cute characters!Little Mo the mouse is having a birthday party.

|
My Brother Is a Superhero
Luke is massively annoyed about this, but when Zack is kidnapped by his arch-nemesis, Luke and his friends have only five days to find him and save the world...

|

|

|
|
 |